FERMILAB/NICADD PHOTOINJECTOR LABORATORY

H. Julia Brito SIST Program Tuesday, August 6, 2002

PERSONAL BACKGROUND

- Undergraduate at The University of Texas in Austin
- Mechanical Engineering
- Concentration in Biomedical Engineering

TEMP HOME @ FERMI

- Location
 - A- Zero
 - Beams Division
 - Research and Development lab
- Family
 - DESY = Deutsches Elektronen-Synchrotron (Germany)
 - NICADD = Northern Illinois Center for Accelerator Detector and Development
 - LBNL = Lawrence Berkeley National Laboratory
 - University of Rochester

OUTLINE

- Brief tour of A0 Photoinjector beam line
- Short discussion of work with diagnostic apparatus
- Concise summary of future goals
 - Photoinjector lab
 - Personal

PHOTOINJECTOR BEAM LINE SCHEMATIC

KLYSTRON FOR PHOTO-CATHODE GUN

- Output power = 3 MW
- Located outside of beam line cave
- Radio Frequency (RF)
 waves @ 1.3 GHz travel
 via a waveguide—
 minimal losses for
 higher frequencies

ENTERING THE CAVE

- •RF waves produce electric field in 1.5 cell cavity
- Phase timing is crucial for electrons produced by cathode prep chamber to be accelerated
- Solenoids encircle the cathode gun for electron compression and focus
- Something needed to initially pick off electrons

CLASS IV LASER

- Laser beam is created in oscillator cavity
- Many components, more things to go wrong
- Problems are not-soobvious (lamp strike failure)

INFRARED TO ULTRAVIOLET LIGHT

Multi-pass stages used to amplify energy of the laser

IR is converted to UV via doubling crystals and is guided into the cave

LASER ENTERS THE BEAM LINE

Quantum Efficiency = # of electrons / photon

Laser optics in cave (Remote-control Iris)

Bad phase scan

Good phase scan

NINE CELL SUPER-CONDUCTING CAVITY

*Each cell progressively steps up the acceleration of the electrons

*Energy of the electrons increases from ~4 MeV to ~17 MeV

CRYOGENIC MONITOR OF 9 - CELL

MAGNETS

- <u>Dipole magnets</u>: used for steering
- <u>Quadrupole magnets</u>: used for focusing; focuses in the transverse plane i.e. focuses in dimension of space
- <u>Chicane</u>: consists of 4 dipole magnets; steers beam down, straight, up, & straight again; focuses in the longitudinal plane i.e. focuses in dimension of time

END OF THE BEAM LINE

Spectrometer = magnet used to measure the energy at the end of the beam line

Total Energy =
$$sqrt((1.54*I_{spec})^2 + 0.511^2)$$

MULT	3.000	MULT CONTROLLER	į	3.000		N/A	
SOLMN	1.000	SOLENOID MAIN	*	179.999	s	A	
SOLBUC	1.000	SOLENOID BUCKING	*	189.998	s	A	
SOLSEC	1.000	SOLENOID SECONDAR!	*	180.003	s	A	
PSPECT	0.200	SPECTROMETER PS	*	9.496	s	A	
CAMCTL	1.000	AVMS CNTL	*	lundefined	s		EN
FCUPX2	1.000	ACT#1 FCUPX2	, *	lundefined	s		OUT
FLAGX2	1.000	ACT#2 FLAGX2	*	lundefined	s		out
FLAGX3	1.000	ACT#3 FLAGX3	*	lundefined	s		OUT

TURNING ON!

DIAGNOSTICS

- A-Zero Control Room
 - Parameter pages
 - Oscilloscope readings
 - Data acquisition
- Cameras measure transverse bunch profile
- Interferometer measures longitudinal bunch length

INTERFEROMETER @ XL4

Best approach would be to work without windows i.e. have the interferometer be a part of the beam line

However this type of interferometer would:

*be hard to align

*cost ~\$50,000

Solution:

Insert flag in beam line @ 45° angle and design a customized viewport

VIEWP

- Crystalline quartz window
- Stainless steel recessed tube and flange
- Vacuum tight conditions

INTERFEROMETER DESIGN

Designer:
Uwe Happek

@ The Univ.
of Georgia

Purpose:
detectors use an
inverse Fourier
transform to reflect
shape of electron
distribution in bunch

TRANSLATION STAGE

- Controller/keypad/motor stage system
- Communicate with manufacturers for correct setup
- Labview interface

STABLE 1

- Drawing
- Machining
- Polishing
- Packaging
- Shipping

FUTURE GOALS...

...of A-Zero Photoinjector Lab

...of a little Texan intern

Biomedical Optics, Cell/Tissue Engineering, Nanotechnology, Biomedical Instrumentation, Prosthetic Engineering, etc.